Vane motors
Single & double
M3B - M4 / M4S series
CONTENTS - M3* AND M4* SERIES

GENERAL
- General characteristics ... 3
- Technical data .. 4
- General characteristics ... 4
- Maximum speeds ... 5
- Maximum speed and maximum continuous pressure 6
- Motor selection ... 7
- Description .. 8
- Ports ... 9
- Hydraulic fluids ... 9
- Shafts ... 10
- Minimum replenishment pressure .. 10
- Notes ... 11

M3B
- Performance curves .. 12 & 13
- Ordering code, technical data and operating characteristics 20
- Dimensions ... 21

M4C - M4SC
- Performance curves .. 14 & 15
- Ordering code, technical data and operating characteristics 22
- Dimensions ... 23

M4D - M4SD
- Performance curves .. 16 & 17
- Ordering code, technical data and operating characteristics 24
- Dimensions ... 25

M4E - M4SE
- Performance curves .. 18
- Ordering code, technical data and operating characteristics 26
- Dimensions ... 27

M4DC - M4SDC
- Performance curves .. 14 to 17
- Ordering code and technical data ... 28
- Dimensions (rear ports) and operating characteristics 29
- Dimensions (side and opposite ports) ... 30
- Notes ... 31
- Addresses ... 32
CHARACTERISTICS - M3* AND M4* SERIES

HIGH STARTING TORQUE EFFICIENCY
The high starting torque efficiency of vane type motors makes them especially applicable in load hoist winch drives, swing drives and propulsion drives. This high starting torque efficiency allows the motor to start under high load without pressure overshoots, jerks and high instantaneous horsepower loads.

HIGH VOLUMETRIC EFFICIENCY
Vane motors begin life with high volumetric efficiency and maintain that efficiency throughout their operating life.

LOW TORQUE RIPPLE AT LOW SPEED
When operating at very low speeds on applications such as swing and load hoist drives, the vane motor exhibits very low torque ripple.

2 AND 3-SPEED VERSIONS AVAILABLE
The M4DC, because of its unequal size cartridges, allows the use of 3 speed operation. This makes them more applicable in traction drive circuits to replace manually shifted gear-boxes. 2-speed motors are available in a wider range of ratios than standard gear motors.

BALANCED DESIGN
Vane, rotor and cam ring are pressure balanced to increase life and efficiency over full speed range.

INTERCHANGEABLE ROTATING GROUPS
Rotating groups may be easily replaced to renew the motor or change displacement to suit altered requirements for speed or torque.

REVERSIBLE ROTATION
The motors may be stopped or reversed repeatedly and rapidly driving or braking the connected shaft load at controlled torque levels.

WIDE SPEED RANGE
Starting to maximum RPM, with full torque capability during acceleration.

PORTS AND MOUNTING
Conform fully to SAE J744c (ISO-3019-1) standards to simplify refitting and installation.

FIRE RESISTANT FLUIDS
Are easily used in the standard M3B and M4* versions of these motors. These include phosphate or organic ester fluids and blends, water-glycol solutions and water-oil invert emulsions.

M3B AND M4* SERIES MOTORS
The M3B and M4* have been designed especially for severe duty applications which require high pressure up to 3400 PSI, high speed up to 4000 RPM and low fluid lubricity (HF-1, HF-2A, HF-3, HF-4, HF-5).
TECHNICAL DATA - M3B AND M4* SERIES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M3</td>
<td>B</td>
<td>009</td>
<td>0.56</td>
<td>0.08</td>
<td>0.014</td>
<td>174.3</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>012</td>
<td>0.75</td>
<td>0.11</td>
<td>0.018</td>
<td>236.3</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>018</td>
<td>1.13</td>
<td>0.19</td>
<td>0.030</td>
<td>412.4</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027</td>
<td>1.70</td>
<td>0.30</td>
<td>0.046</td>
<td>680.5</td>
<td>21.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>036</td>
<td>2.26</td>
<td>0.38</td>
<td>0.060</td>
<td>902.6</td>
<td>28.3</td>
</tr>
<tr>
<td>M4</td>
<td>C</td>
<td>024</td>
<td>1.49</td>
<td>0.24</td>
<td>0.037</td>
<td>535.4</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027</td>
<td>1.72</td>
<td>0.28</td>
<td>0.043</td>
<td>619.5</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>031</td>
<td>2.11</td>
<td>0.33</td>
<td>0.054</td>
<td>768.0</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>043</td>
<td>2.84</td>
<td>0.45</td>
<td>0.072</td>
<td>1062.0</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>055</td>
<td>3.59</td>
<td>0.57</td>
<td>0.091</td>
<td>1318.6</td>
<td>41.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>067</td>
<td>4.34</td>
<td>0.69</td>
<td>0.111</td>
<td>1504.5</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>075</td>
<td>4.89</td>
<td>0.78</td>
<td>0.120</td>
<td>1752.2</td>
<td>55.6</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>024</td>
<td>1.49</td>
<td>0.24</td>
<td>0.037</td>
<td>535.4</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027</td>
<td>1.72</td>
<td>0.28</td>
<td>0.043</td>
<td>619.5</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>031</td>
<td>2.11</td>
<td>0.33</td>
<td>0.054</td>
<td>768.0</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>043</td>
<td>2.84</td>
<td>0.45</td>
<td>0.072</td>
<td>1062.0</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>055</td>
<td>3.59</td>
<td>0.57</td>
<td>0.091</td>
<td>1318.6</td>
<td>41.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>067</td>
<td>4.34</td>
<td>0.69</td>
<td>0.111</td>
<td>1504.5</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>075</td>
<td>4.89</td>
<td>0.78</td>
<td>0.120</td>
<td>1752.2</td>
<td>55.6</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>024</td>
<td>1.49</td>
<td>0.24</td>
<td>0.037</td>
<td>535.4</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027</td>
<td>1.72</td>
<td>0.28</td>
<td>0.043</td>
<td>619.5</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>031</td>
<td>2.11</td>
<td>0.33</td>
<td>0.054</td>
<td>768.0</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>043</td>
<td>2.84</td>
<td>0.45</td>
<td>0.072</td>
<td>1062.0</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>055</td>
<td>3.59</td>
<td>0.57</td>
<td>0.091</td>
<td>1318.6</td>
<td>41.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>067</td>
<td>4.34</td>
<td>0.69</td>
<td>0.111</td>
<td>1504.5</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>075</td>
<td>4.89</td>
<td>0.78</td>
<td>0.120</td>
<td>1752.2</td>
<td>55.6</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>024</td>
<td>1.49</td>
<td>0.24</td>
<td>0.037</td>
<td>535.4</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027</td>
<td>1.72</td>
<td>0.28</td>
<td>0.043</td>
<td>619.5</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>031</td>
<td>2.11</td>
<td>0.33</td>
<td>0.054</td>
<td>768.0</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>043</td>
<td>2.84</td>
<td>0.45</td>
<td>0.072</td>
<td>1062.0</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>055</td>
<td>3.59</td>
<td>0.57</td>
<td>0.091</td>
<td>1318.6</td>
<td>41.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>067</td>
<td>4.34</td>
<td>0.69</td>
<td>0.111</td>
<td>1504.5</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>075</td>
<td>4.89</td>
<td>0.78</td>
<td>0.120</td>
<td>1752.2</td>
<td>55.6</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>024</td>
<td>1.49</td>
<td>0.24</td>
<td>0.037</td>
<td>535.4</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027</td>
<td>1.72</td>
<td>0.28</td>
<td>0.043</td>
<td>619.5</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>031</td>
<td>2.11</td>
<td>0.33</td>
<td>0.054</td>
<td>768.0</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>043</td>
<td>2.84</td>
<td>0.45</td>
<td>0.072</td>
<td>1062.0</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>055</td>
<td>3.59</td>
<td>0.57</td>
<td>0.091</td>
<td>1318.6</td>
<td>41.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>067</td>
<td>4.34</td>
<td>0.69</td>
<td>0.111</td>
<td>1504.5</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>075</td>
<td>4.89</td>
<td>0.78</td>
<td>0.120</td>
<td>1752.2</td>
<td>55.6</td>
</tr>
</tbody>
</table>

Internal drain: All these motors may be equipped with internal drain. Then the model numbers will be M3B1, M4C1, M4SC1, M4D1, M4SD1, M4E1, M4SE1, M4DC1, M4SDC1.

For further information or if the performance characteristics outlined above do not meet your own particular requirements, please consult your local DENISON Hydraulics office.

GENERAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Mounting standard</th>
<th>Weight without connector and bracket - lbs</th>
<th>Moment of inertia lb.in2</th>
<th>Option for inlet and outlet port</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3B</td>
<td>SAE J744c ISO/3019-1 SAE A</td>
<td>17.6</td>
<td>SAE threaded 4 bolt J718c ISO/DIS 6162-1 - 3/4"</td>
</tr>
<tr>
<td>M4C/SC</td>
<td>SAE J744c ISO/3019-1 SAE B</td>
<td>34.0</td>
<td>SAE threaded 4 bolt J718c ISO/DIS 6162-1 - 1"</td>
</tr>
<tr>
<td>M4D/SD</td>
<td>SAE J744c ISO/3019-1 SAE C</td>
<td>59.5</td>
<td>SAE threaded 4 bolt J718c ISO/DIS 6162-1 - 1/4"</td>
</tr>
<tr>
<td>M4E/SE</td>
<td>SAE J744c ISO/3019-1 SAE C</td>
<td>99.0</td>
<td>SAE threaded 4 bolt J718c ISO/DIS 6162-1 - 2"</td>
</tr>
<tr>
<td>M4DC/SDC</td>
<td>SAE J744c ISO/3019-1 SAE C</td>
<td>88.0</td>
<td>SAE 4 bolt J718c ISO/DIS 6162-1 - 1/4"</td>
</tr>
</tbody>
</table>

P2 = See M4C/M4SC
MAXIMUM SPEED, PRESSURE RATINGS - M3B AND M4* SERIES

<table>
<thead>
<tr>
<th>Series</th>
<th>Size</th>
<th>Displ.</th>
<th>Max. pressure range drain</th>
<th>Max. speed for low loaded condition 1)</th>
<th>Max. speed for max. pressure ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3</td>
<td>B</td>
<td>009</td>
<td>2500</td>
<td>22</td>
<td>4000 2500 3000 3600</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>012</td>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C1</td>
<td>024</td>
<td>2500 2500 2500</td>
<td>4000 2500 3600 2500 3000 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>043</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>067</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>075</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>SC1</td>
<td>024</td>
<td>3400 3000 2500</td>
<td>4000 2500 3600 2500 3000 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>043</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>067</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>075</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>D1</td>
<td>062</td>
<td>2500 2500 2000</td>
<td>4000 2500 3000 2500 2800 2000 2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>SD</td>
<td>062</td>
<td>3400 2700 2000</td>
<td>4000 2500 3000 2500 2800 2000 2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD1</td>
<td>074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>E1</td>
<td>153</td>
<td>2500 2500 2000</td>
<td>3600 2500 3000 2500 2800 1800 2200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>SE1</td>
<td>153</td>
<td>2700 2500 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>DC1</td>
<td>2500</td>
<td>2500 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDC</td>
<td>SDC1</td>
<td>D-062</td>
<td>3400 2700 2000</td>
<td>4000 2500 3000 2500 2800 2000 2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>at 088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>at 043</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D-102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D-113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-067</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D-128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D-138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-075</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Low loaded condition 500 PSI for M3 and M4, 1160 PSI max. for M4S (see page 6).
2) Intermittent speed - Do not exceed 6 seconds per minute of operation.
HF-0, HF-2 = Antiwear petroleum base. HF-2A = Crankcase. HF-1 = Non antiwear petroleum base. HF-5 = Synthetic fluids.
HF-3 = Water in oil emulsions. HF-4 = Water glycols.
Internal drain : All these motors may be equipped with internal drain. Then the model numbers will be M3B1, M4C1, M4SC1, M4D1, M4SD1, M4E1, M4SE1, M4DC1, M4SDC1.
Performances required

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque T</td>
<td>1240 in.lbf</td>
</tr>
<tr>
<td>Pump flow (available) at 115 SUS q Ve [GPM]</td>
<td>30.4</td>
</tr>
<tr>
<td>Speed n [RPM]</td>
<td>1500</td>
</tr>
<tr>
<td>Pressure p [PSI]</td>
<td>2500</td>
</tr>
</tbody>
</table>

1. Check if available power is compatible with required power (0.85 estimated overall efficiency).

\[
0.85 \times \frac{Q \times p}{1714} \geq \frac{T \times n}{63025}
\]

Two ways of calculation:

2a. Calculate \(V_i \) from \(T \) required torque

\[
V_i = \frac{2 \pi x T}{p} = \frac{2 \pi x 1240}{2500} = 3.12 \text{ in}^3/\text{rev.}
\]

3a. Motor choose from \(V_i \) immediately greater

\(M4C 055 \) \(V_i = 3.59 \text{ in}^3/\text{rev.} \)

4a. Check real motor pressure for \(T = 1240 \text{ in.lbf around 1500 RPM} \)

\(M4C 055 \) \(T = 1240 \text{ in.lbf} \) \(n = 1500 \text{ RPM} \)

\(p = 2370 \text{ PSI} \) (see page 15)

5a. Flow loss \(M4C 055 \) at 2370 PSI at 115 SUS \(q_v = 4.2 \text{ GPM} \) (see page 22)

Real flow used by the motor:

\(q_v = q_{Ve} - q_{Vs} = 30.4 - 4.2 = 26.2 \text{ GPM} \)

6a. Real speed of the motor:

\[
n = \frac{q_v \times 231}{V_i} = \frac{26.2 \times 231}{3.59} = 1686 \text{ RPM}
\]

Real performances

\[
\begin{align*}
V_i &= 3.59 \text{ in}^3/\text{rev.} \\
n &= 1680 \text{ RPM} \\
T &= 1240 \text{ in.lbf} \\
p &= 2370 \text{ PSI}
\end{align*}
\]

M4C 055

3b. Motor choose from \(V_i \) immediately smaller

\(M4C 067 \) \(V_i = 4.34 \text{ in}^3/\text{rev.} \) (see page 22)

4b. Check motor press. with \(T = 1240 \text{ in.lbf at 1500 RPM} \)

\(M4C 067 \) \(T = 1240 \text{ in.lbf} \) \(n = 1500 \text{ RPM} \)

\(p = 2030 \text{ PSI} \) (see page 15)

5b. Flow loss of \(M4C 067 \) at 2030 PSI at 115 SUS \(q_v = 3.7 \text{ GPM} \) (see page 22)

Real flow used by the motor:

\(q_v = q_{Ve} - q_{Vs} = 30.4 - 3.7 = 26.7 \text{ GPM} \)

6b. Real speed of the motor:

\[
n = \frac{q_v \times 231}{V_i} = \frac{26.7 \times 231}{4.34} = 1420 \text{ RPM}
\]

Real performances

\[
\begin{align*}
V_i &= 4.34 \text{ in}^3/\text{rev.} \\
n &= 1420 \text{ RPM} \\
T &= 1240 \text{ in.lbf} \\
p &= 2030 \text{ PSI}
\end{align*}
\]

\(M4C 067 \)

In each case always choose the smallest motor which will operate at the highest speed and pressure, and offers the most efficient solution.
DESCRIPTION - M3* AND M4* SERIES

The rotor is of through-hardened high alloy steel.

Check valves are present in the M4 motors with internal drain.

The floating sideplate contains a shuttle valve which passes a higher pressure signal to the clamping area.

OPERATION - SINGLE CARTRIDGE

- The motor shaft is driven by the rotor. Vanes, closely fitted into the rotor slots move radially to seal against the cam ring. The ring has two major and two minor radial sections joined by transitional sections called ramps. These contours and the pressures exposed to them are balanced diametrically.

- Light springs urge the vanes radially against the cam contour assuring a seal at zero speed so the motor can develop starting torque. The springs are assisted by centrifugal force at higher speeds. Radial grooves and holes through the vanes equalize radial hydraulic forces on the vanes at all times. Fluid enters and leaves the motor cartridge through opening in the side plates at the ramps. Each motor port connects to two diametrically opposed ramps. Pressurized fluid entering at Port A torques the rotor clockwise. The rotor transports it to the ramp openings which connect to Port B from which it returns to the low pressure side of the system. Pressure at Port B torques the rotor counter-clockwise.

- The rotor is separated axially from the sideplate surfaces by the fluid film. The front sideplate is clamped against the cam ring by the pressure, maintains optimum clearance as dimensions change with temperature and pressure. A 3-way shuttle valve in the sideplate causes clamping pressure in Port A or B, whichever is the highest.

- Materials are chosen for long life efficiency. Vanes, rotor and cam ring are made out of hardened high alloy steels. Cast semi-steel sideplates are chemically etched to have a fine crystalline surface for good lubrication at start-up.
These motors may be alternately pressurized at Ports A & B to 3400 PSI max. Whichever port is at low pressure should not be subjected to more than 500 PSI. If it is necessary to exceed these limitations, please contact DENISON Hydraulics for application assistance.

These motors must have a drain line connected to the center housing drain connection of sufficient size to prevent back pressure in excess of 50 PSI, and returned to the reservoir below the surface of the oil as far away from the supply pump suction as possible. Model M4DC1 does not require an external drain line, however the outlet pressure must not exceed 50 PSI.

M4S Severe Duty Motors

M4S motors are recommended to be used when back pressure is over 2000 PSI and speed is over 2000 RPM. They are also recommended when fluid viscosity can be under 115 SUS and speed over 2000 RPM. For such severe duty applications M4S motors will exhibit longer life time at high efficiency.

Recommended Fluids

Petroleum based antiwear R & O fluids.

These fluids are the recommended fluids for M3B and M4* series motors. Maximum catalog ratings and performance data are based on operation with these fluids. These fluids are covered by DENISON Hydraulics HF-0 and HF-2 specifications.

Acceptable Alternate Fluids

The use of fluids other than petroleum based antiwear R & O fluids requires that the maximum ratings of the motors will be reduced. In some cases, the minimum replenishment pressures must be increased. Refer to the following chart and the operating characteristics chart for each M3B and M4* motor model for specific details of the reduced ratings.

<table>
<thead>
<tr>
<th>VISCOSITY</th>
<th>3900 SUS</th>
<th>500 SUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. (cold start, low speed & pressure)</td>
<td>3900 SUS</td>
<td>500 SUS</td>
</tr>
<tr>
<td>Max. (full speed & pressure)</td>
<td>140 SUS</td>
<td>89 SUS</td>
</tr>
<tr>
<td>Optimum (max. life)</td>
<td>140 SUS</td>
<td>89 SUS</td>
</tr>
<tr>
<td>Min. (full speed & pressure for HF-1 fluid)</td>
<td>59 SUS</td>
<td>59 SUS</td>
</tr>
<tr>
<td>Min. (full speed & pressure for HF-0 & HF-2 fluids)</td>
<td>59 SUS</td>
<td>59 SUS</td>
</tr>
</tbody>
</table>

Viscosity Index

90°C min. Higher values extend range of operating temperatures and life time.

Maximum fluid temperature (θ) °F

- HF-0, HF-1, HF-2: + 176°C

Minimum fluid temperature (θ) °F

- HF-0, HF-1, HF-2: - 0.4°C

Fluid Cleanliness

The fluid must be cleaned before and during operation to maintain contamination level of NAS 1638 class 8 (or ISO 18/14) or better. Filters with 25 micron (or better, B10 ≥ 100) nominal ratings may be adequate but do not guarantee the required cleanliness levels.

Operating Temperatures and Viscosities

Operating temperatures are a function of fluid viscosities, fluid type, and the pump. Fluid viscosity should be selected to provide optimum viscosity at normal operating temperatures. For cold starts the pumps should be operated at low speed and pressure until fluid warms up to an acceptable viscosity for full power operation.

WATER CONTAMINATION IN THE FLUID

Maximum acceptable content of water.

- 0,10 % for mineral base fluids.
- 0,05 % for synthetic fluids, crankcase oils, biodegradable fluids.

If amount of water is higher then it should be drained off the circuit.
SPLINED SHAFTS

The mating female spline should be free to float and find its own center. If both members are rigidly supported, they must be aligned within .006 TIR or less to reduce fretting. The angular alignment of two spline axes must be less than ± .002 per 1".

The coupling spline must be lubricated with a lithium molydisulfide grease or a similar lubricant.

The coupling must be hardened to a hardness between 27 and 45 HRc.

The female spline must be made to conform to the Class 1 fit as described in SAE-J498b (1971). This is described as a Flat Root Side Fit.

COUPLINGS SPLINES

KEYED SHAFT

DENISON Hydraulics supplies the M3B and M4* series keyed shaft motors with high strength heat-treated keys. Therefore, when installing or replacing these motors, the heat-treated keys must be used in order to ensure maximum life in the application. If the key is replaced, it must be a heat-treated key between 27 and 34 R.C. hardness. The corners of the keys must be chamfered .03 to .04 at 45° to clear radii in the key way.

Alignment of keyed shafts must be within tolerances given for splined shafts.

NOTE

SHAFT LOADS

Axial or radial load are permissible. Consult specific sections for more details.

MINIMUM REPLENISHMENT PRESSURE (PSI) - M3B AND M4* SERIES

<table>
<thead>
<tr>
<th>Series</th>
<th>Speed [RPM] - Oil viscosity = 150 SUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
</tr>
<tr>
<td>M3B</td>
<td>8.7</td>
</tr>
<tr>
<td>M4C/SC</td>
<td>10.2</td>
</tr>
<tr>
<td>M4D/SD</td>
<td>10.2</td>
</tr>
<tr>
<td>M4E/SE</td>
<td>20.3</td>
</tr>
<tr>
<td>M4DC/SDC</td>
<td></td>
</tr>
<tr>
<td>2-C-DC</td>
<td>24.7</td>
</tr>
<tr>
<td>2-D-DC</td>
<td>16.0</td>
</tr>
<tr>
<td>3-D-C-DC</td>
<td>24.7</td>
</tr>
</tbody>
</table>

The inlet port of the fluid motor must be supplied with replenishment pressure as listed above to prevent cavitation during dynamic braking. These pressures should be multiplied by a coefficient of 1.5 for M4S motors used with fire resistant fluids (HF-3, HF-4, HF-5).

Replenishment pressure for tandem 2 & 3-speed motors must be provided during periods when the motor is dynamic braking, shutting down or coasting. When the motor is operating in the high speed mode and the nonworking cartridge is at low pressure, it is necessary to create a back pressure, as listed above, at the motor discharge port. The above mentioned minimum replenishment pressure chart is for maximum displacement cartridges. Smaller cartridges require lower minimum pressures.

Contact DENISON Hydraulics for further information.
PERFORMANCE CURVES - OIL VISCOSITY: 115 SUS (45°) - M3B SERIES

M3B 009

Torque T [in.lbf]

Speed n [RPM]

Power [HP]

Torque T [in.lbf]

Speed n [RPM]

Power [HP]

M3B 012

Torque T [in.lbf]

Speed n [RPM]

Power [HP]

M3B 018

Torque T [in.lbf]

Speed n [RPM]

Power [HP]

M3B 027

Torque T [in.lbf]

Speed n [RPM]

Power [HP]
PERFORMANCE CURVES - OIL VISCOSITY: 115 SUS (45°) - M4* SERIES

M4C 024

M4C 027

M4C 031

M4C 043

Parker Hannifin
Denison Vane Pump Division
Vierzon - France
PERFORMANCE CURVES - OIL VISCOSITY: 115 SUS (45°) - M4* SERIES

M4C 055

M4C 067

M4C 075
ORDERING CODE - M3B SERIES

Model No. M3B1 M3B - 036 - 1 N 00 - B 1 01 ..

Modification

Port connections
00 = SAE threaded port
SAE drain
01 = SAE 4 bolt flange
BSPP drain
02 = BSPP threaded port
BSPP drain

Seal class
1 = S1 - BUNA N
4 = S4 - EPDM
5 = S5 - VITON

Design letter

Porting combination
00 = standard

Type of shaft
1 = keyed (non SAE)
3 = splined (SAE A)
4 = splined (SAE B)

Rotation
N = bi-directional

View from shaft end:
CW rotation A = inlet
B = outlet
CCW rotation A = outlet
B = inlet

INTERNAL LEAKAGE

PERMISSIBLE RADIAL AND AXIAL LOADS

Do not apply Fr and Fa loads simultaneously

OPERATING CHARACTERISTICS - TYPICAL [115 SUS]

<table>
<thead>
<tr>
<th>Model</th>
<th>Volumetric displacement V_i</th>
<th>Input flow at $n = 2000$ RPM</th>
<th>Torque T at $n = 2000$ RPM</th>
<th>Power output at $n = 2000$ RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in3/rev. GPM GPM in.lbf</td>
<td>at 2500 PSI Δp</td>
<td>at 2500 PSI Δp</td>
<td>at 2500 PSI Δp</td>
</tr>
<tr>
<td>M3B 009</td>
<td>.56 4.9 8.0</td>
<td>174.3 5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3B 012</td>
<td>.75 6.5 9.7</td>
<td>236.3 7.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3B 018</td>
<td>1.13 9.8 12.9</td>
<td>412.4 13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3B 027</td>
<td>1.70 14.7 17.8</td>
<td>680.5 21.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3B 036</td>
<td>2.26 19.6 22.8</td>
<td>902.6 28.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ORDERING CODE - M4C - M4SC SERIES

Model No. M4*C - 067 - 1 N 00 - A 1 02

- Series external drain
- Series internal drain

Torque
024 = .24 in.lb/PSI
027 = .28 in.lb/PSI
031 = .33 in.lb/PSI
043 = .45 in.lb/PSI
055 = .57 in.lb/PSI
067 = .69 in.lb/PSI
075 = .78 in.lb/PSI

Type of shaft
1 = keyed (SAE B)
2 = keyed (non SAE)
3 = splined (SAE B)

Rotation
N = bi-directional

* = S = Severe duty motor.

M4C1 - M4SC1 : Drain port is plugged.

Port connections
01 = SAE threaded port
02 = SAE 4 bolt flange
04 = UNC threaded - BSPP drain
05 = SAE 4 bolt flange - metric threaded - BSPP drain

Modification

Seal class
1 = S1 (M4C)
5 = S5 (M4SC)

Design letter

Porting combination
00 = standard

View from shaft end:
CW rotation A = inlet
B = outlet
CCW rotation A = outlet
B = inlet

INTERNAL LEAKAGE

PERMISSIBLE RADIAL AND AXIAL LOADS

OPERATING CHARACTERISTICS - TYPICAL [115 SUS]

<table>
<thead>
<tr>
<th>Model</th>
<th>Volumetric displacement Vi</th>
<th>Input flow at n = 2000 RPM</th>
<th>Torque T at n = 2000 RPM</th>
<th>Power output at n = 2000 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in³/rev.</td>
<td>GPM</td>
<td>GPM</td>
<td>in.lbf</td>
</tr>
<tr>
<td>M4C - M4SC 024</td>
<td>1.49</td>
<td>13.0</td>
<td>17.7</td>
<td>535.4</td>
</tr>
<tr>
<td>M4C - M4SC 027</td>
<td>1.72</td>
<td>14.8</td>
<td>19.5</td>
<td>619.5</td>
</tr>
<tr>
<td>M4C - M4SC 031</td>
<td>2.11</td>
<td>18.5</td>
<td>23.2</td>
<td>768.0</td>
</tr>
<tr>
<td>M4C - M4SC 043</td>
<td>2.84</td>
<td>24.6</td>
<td>29.3</td>
<td>1062.0</td>
</tr>
<tr>
<td>M4C - M4SC 055</td>
<td>3.59</td>
<td>31.2</td>
<td>36.0</td>
<td>1318.6</td>
</tr>
<tr>
<td>M4C - M4SC 067</td>
<td>4.34</td>
<td>37.5</td>
<td>42.3</td>
<td>1504.5</td>
</tr>
<tr>
<td>M4C - M4SC 075</td>
<td>4.89</td>
<td>42.3</td>
<td>47.0</td>
<td>1752.2</td>
</tr>
</tbody>
</table>
ORDERING CODE - M4D - M4SD SERIES

Model No.

M4*D1

M4*D - 138 - 1 N 00 - B 1 02 ..

Modification

Port connections
01 = SAE threaded port
SAE drain
02 = SAE 4 bolt flange
UNC threaded - SAE drain
04 = SAE 4 bolt flange
UNC threaded - BSPP drain
M4 = SAE 4 bolt flange
metric threaded - BSPP drain

Seal class
1 = S1 (M4D)
5 = S5 (M4SD)

Design letter

Port connections

- 01 = SAE threaded port
- 02 = SAE 4 bolt flange
- 04 = UNC threaded - SAE drain
- 05 = UNC threaded - BSPP drain
- 102 = metric threaded - BSPP drain

Type of shaft

1 = keyed (SAE C)
3 = splined (SAE C)

Rotation

N = bi-directional

* = S = Severe duty motor.

M4D1 - M4SD1 : Drain port is plugged.

View from shaft end :

- CW rotation A = inlet
- CCW rotation A = outlet
- B = outlet
- B = inlet

INTERNAL LEAKAGE

- 115 SUS
- 60 SUS

PERMISSIBLE RADIAL AND AXIAL LOADS

Do not apply Fr and Fa loads simultaneously

OPERATING CHARACTERISTICS - TYPICAL [115 SUS]

<table>
<thead>
<tr>
<th>Model</th>
<th>Volumetric displacement V_i</th>
<th>Input flow at n = 2000 RPM</th>
<th>Torque T at n = 2000 RPM</th>
<th>Power output at n = 2000 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in³/rev.</td>
<td>GPM</td>
<td>at 2500 PSI Δp</td>
<td>in.lbf</td>
</tr>
<tr>
<td>M4D - M4SD 062</td>
<td>3.97</td>
<td>33.8</td>
<td>40.0</td>
<td>1460.0</td>
</tr>
<tr>
<td>M4D - M4SD 074</td>
<td>4.69</td>
<td>41.5</td>
<td>47.8</td>
<td>1770.0</td>
</tr>
<tr>
<td>M4D - M4SD 088</td>
<td>5.56</td>
<td>48.0</td>
<td>54.4</td>
<td>2088.5</td>
</tr>
<tr>
<td>M4D - M4SD 102</td>
<td>6.44</td>
<td>55.5</td>
<td>61.8</td>
<td>2336.3</td>
</tr>
<tr>
<td>M4D - M4SD 113</td>
<td>7.12</td>
<td>61.5</td>
<td>67.9</td>
<td>2655.0</td>
</tr>
<tr>
<td>M4D - M4SD 128</td>
<td>8.08</td>
<td>70.0</td>
<td>76.3</td>
<td>3009.0</td>
</tr>
<tr>
<td>M4D - M4SD 138</td>
<td>8.81</td>
<td>76.3</td>
<td>82.7</td>
<td>3292.0</td>
</tr>
</tbody>
</table>

Parker Hannifin
Denison Vane Pump Division
Vierzon - France
DIMENSIONS & OPERATING CHARACTERISTICS - Weight: 59.5 lbs - M4D - M4SD SERIES

Shaft Code 1
- Metric, SAE-61
- 2.56 DIA

Shaft Code 3
- SAE C Splined Shaft
- Flat Root - .3125 fit
- 14 Teeth - Pressure Angle: 30°

Mounting Torque: 133 ft-lbs

2.19
.67
.50
.18
.06 x .45

.25 MAX
.31

7/16"-14 UNC, .87 Deep B Holes

Drain SAE B (3/4"-16 UNF) or 3/8" BSP

SAE 20 (1 5/8"-16 UNF) x 75 Deep - 2 Holes

SAE Threaded Port

Parker Hannifin
Denison Vane Pump Division
Vierzon - France
Model No.

Series external drain
Series internal drain

Torque
153 = 1.54 in.lb/PSI
185 = 1.86 in.lb/PSI
214 = 2.16 in.lb/PSI

Type of shaft
1 = keyed (SAE C)
3 = splined (SAE C)

Rotation
N = bi-directional

* = S = Severe duty motor.

M4E1 - M4SE1 : Drain port is plugged.

View from shaft end:
CW rotation A = inlet CCW rotation A = outlet
B = outlet B = inlet

Modification
Port connections
01 = SAE threaded port
SAE drain
02 = SAE 4 bolt flange
UNC threaded - SAE drain
04 = SAE 4 bolt flange
UNC threaded - BSPP drain

Seal class
S = S5

Design letter

Porting combination
00 = standard

INTERNAL LEAKAGE

PERMISSIBLE RADIAL AND AXIAL LOADS

Do not apply Fr and Fa loads simultaneously

PARKER HANNIFIN
Denison Vane Pump Division
Vierzon - France
ORDERING CODE - M4DC - M4SDC SERIES

Model No. M4*DC1 - M4*DC - 138 - 031 - 1 N 00 - B 1 02 00 .. M4*DC1

Series external drain
Series internal drain

Torque for A1 - B1
062 = .63 in.lb/PSI
074 = .75 in.lb/PSI
088 = .88 in.lb/PSI
102 = .96 in.lb/PSI
113 = 1.13 in.lb/PSI
128 = 1.40 in.lb/PSI

Torque for A2 - B2
024 = .24 in.lb/PSI
027 = .28 in.lb/PSI
031 = .33 in.lb/PSI
043 = .45 in.lb/PSI
055 = .57 in.lb/PSI
067 = .69 in.lb/PSI
075 = .78 in.lb/PSI

Type of shaft
1 = keyed (SAE C)
3 = splined (SAE C)

Modification
No control

Port connections (P2)
01 = SAE threaded
02 = SAE 4 bolt flange
04 = SAE 4 bolt flange

Seal class
1 = S1 (M4DC)
5 = S5 (M4SDC)

Design letter

Porting letter
See below

Rotation
N = bi-directional

M4DC1 - M4SDC1 : Drain port is plugged.

INTERNAL LEAKAGE

PERMISSIBLE RADIAL AND AXIAL LOADS

Do not apply Fr and Fa loads simultaneously.

Parker Hannifin
Denison Vane Pump Division
Vierzon - France
DIMENSIONS & OPERATING CHARACTERISTICS - Weight: 88.0 lbs - M4DC - M4SDC SERIES

OPERATING CHARACTERISTICS - TYPICAL [115 SUS]

<table>
<thead>
<tr>
<th>Model</th>
<th>Volumetric displacement V_i</th>
<th>Input flow at $n = 2000$ RPM</th>
<th>Torque T at $n = 2000$ RPM</th>
<th>Power output at $n = 2000$ RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in3/rev.</td>
<td>Theoretical at 2500 PSI Δp</td>
<td>GPM</td>
<td>GPM</td>
</tr>
<tr>
<td>M4D - M4SD 062</td>
<td>3.97</td>
<td>33.8</td>
<td>40.0</td>
<td>1460.0</td>
</tr>
<tr>
<td>M4D - M4SD 074</td>
<td>4.69</td>
<td>41.5</td>
<td>47.8</td>
<td>1770.0</td>
</tr>
<tr>
<td>M4D - M4SD 088</td>
<td>5.56</td>
<td>48.0</td>
<td>54.4</td>
<td>2088.5</td>
</tr>
<tr>
<td>M4D - M4SD 102</td>
<td>6.44</td>
<td>55.5</td>
<td>61.8</td>
<td>2336.3</td>
</tr>
<tr>
<td>M4D - M4SD 113</td>
<td>7.12</td>
<td>61.5</td>
<td>67.9</td>
<td>2655.0</td>
</tr>
<tr>
<td>M4D - M4SD 128</td>
<td>8.08</td>
<td>70.0</td>
<td>76.3</td>
<td>3009.0</td>
</tr>
<tr>
<td>M4D - M4SD 138</td>
<td>8.81</td>
<td>76.3</td>
<td>82.7</td>
<td>3292.0</td>
</tr>
<tr>
<td>M4C - M4SC 024</td>
<td>1.49</td>
<td>13.0</td>
<td>17.7</td>
<td>535.4</td>
</tr>
<tr>
<td>M4C - M4SC 027</td>
<td>1.72</td>
<td>14.8</td>
<td>19.5</td>
<td>619.5</td>
</tr>
<tr>
<td>M4C - M4SC 031</td>
<td>2.11</td>
<td>18.5</td>
<td>23.2</td>
<td>768.0</td>
</tr>
<tr>
<td>M4C - M4SC 043</td>
<td>2.84</td>
<td>24.6</td>
<td>29.3</td>
<td>1062.0</td>
</tr>
<tr>
<td>M4C - M4SC 055</td>
<td>3.59</td>
<td>31.2</td>
<td>36.0</td>
<td>1318.6</td>
</tr>
<tr>
<td>M4C - M4SC 067</td>
<td>4.34</td>
<td>37.5</td>
<td>42.3</td>
<td>1504.5</td>
</tr>
<tr>
<td>M4C - M4SC 075</td>
<td>4.89</td>
<td>42.3</td>
<td>47.0</td>
<td>1752.2</td>
</tr>
</tbody>
</table>