Remote Controls
PCL4
Hydraulic Proportional Remote Control Valve Series

Catalogue HY17-8357/UK
June 2005
Catalogue layout

This catalogue has been designed to give an overview of the PCL4 series of valves and to make it easy for you to study and choose from the different valve functions available, so that we may customize your valve in accordance with your wishes. General information and technical data is given first, followed by descriptions of the various options that can be specified and, finally, by dimensional drawings for the respective valves.

How to order your valve

The next step is to complete our so-called “Customer Specification Form”, which enables detailed specification of the optional functions and port-specific control-pressure characteristics you wish to be incorporated into your valve. However, if you require only a simple, basic valve, in which all control-pressure ports have the same configuration, you can specify your valve by determining an ordering code in accordance with the information given on page 11. It is simply a matter of entering the codes for the desired options into the shaded boxes in the ordering code, as shown in the example.

For assistance in configuring your valve, completing the Customer Specification Form or determining the ordering code, please do not hesitate to contact your nearest Parker representative, who will either help personally or refer you to the appropriate product specialist.

The information in your Customer Specification Form will be entered into our computerized valve specification program, which generates a unique ID number that will be stamped into the data plate on your valve. (If you order your valve by means of an ordering code, the code will be stamped into the data plate on your valve.) Your valve specifications will then be stored on our database to facilitate accurate identification of the product in the event of re-ordering or service-related questions.

Early consultation with Parker saves time and money

Our experienced applications engineers have in-depth knowledge of different hydraulic systems and the ways in which they work. They are at your disposal to offer expert advice on the desired combination of functions, control characteristics and economic demands. By consulting Parker early in the project planning stage, you are assured of a comprehensive hydraulic system that gives your machine the best possible operating and control performance.

Subject to alteration without prior notice. The diagrams in the catalogue show typical curves only. While the contents of the catalogue are updated continuously, the validity of the information given should always be confirmed. Technical information in the catalogue is applicable at an oil viscosity of 30 mm²/s and temperature of 50 °C. For more detailed information, please contact Parker.
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalogue Information</td>
<td>2</td>
</tr>
<tr>
<td>General Information</td>
<td>4</td>
</tr>
<tr>
<td>Ordering code</td>
<td>5</td>
</tr>
<tr>
<td>Technical data</td>
<td>6</td>
</tr>
<tr>
<td>Lever forces</td>
<td>7</td>
</tr>
<tr>
<td>Electrical data</td>
<td>7</td>
</tr>
<tr>
<td>Breaking capacity</td>
<td>7</td>
</tr>
<tr>
<td>Connections</td>
<td>7</td>
</tr>
<tr>
<td>Weight</td>
<td>7</td>
</tr>
<tr>
<td>Valve type</td>
<td>8</td>
</tr>
<tr>
<td>Control pressure ports</td>
<td>8</td>
</tr>
<tr>
<td>Connections</td>
<td>8</td>
</tr>
<tr>
<td>Location of connections</td>
<td>8</td>
</tr>
<tr>
<td>Control pressure</td>
<td>8</td>
</tr>
<tr>
<td>Mounting plate</td>
<td>9</td>
</tr>
<tr>
<td>Extra centring springs</td>
<td>9</td>
</tr>
<tr>
<td>Levers E2, E3, E4</td>
<td>9</td>
</tr>
<tr>
<td>Lever E1</td>
<td>9</td>
</tr>
<tr>
<td>Activating devices</td>
<td>10</td>
</tr>
<tr>
<td>Lever N2T</td>
<td>10</td>
</tr>
<tr>
<td>Lever N4T</td>
<td>10</td>
</tr>
<tr>
<td>Lever detents for PCL402</td>
<td>11</td>
</tr>
<tr>
<td>Friction brake for PCL402</td>
<td>11</td>
</tr>
<tr>
<td>Shuttle valve for signal on activation of valve</td>
<td>11</td>
</tr>
<tr>
<td>PCL401 levers</td>
<td>12</td>
</tr>
<tr>
<td>Dimensional drawings</td>
<td>12-17</td>
</tr>
</tbody>
</table>
The PCL4 is a stackable hydraulic control-pressure valve intended for the proportional, hydraulic remote control of directional valves, pumps with variable displacement, positioning cylinders, etc. It can be obtained with a co-ordinate lever (joystick), linear lever or foot pedal as the activating device.

Freedom in machine design
Good machine design is heavily dependent on the availability of versatile components and systems that can be combined in different ways to give optimum operating and control characteristics. Parker control systems give you the freedom to design your machines the way you want them, since they enable components such as directional valves and other control devices to be located ideally on the machine. This also gives advantages in production, since it greatly facilitates the building of machine sub-assemblies at different sites prior to collation for final assembly.

Parker supplies a wide range of pneumatic, hydraulic and electric control devices that enable optimum ergonomic design of the machine-control station. (Please see separate brochures for information on our hydraulic and electric remote-control systems.)

Safety
The robust and simple construction of the PCL4 remote control valve makes it very reliable and greatly facilitates training and servicing. This, together with consistently predictable control properties, gives a high level of operational safety for many years.

Design
The valve is made up of sections, each of which contains two 3-way pressure reducing valves (one per signal port). Up to 6 sections can be stacked into one and the same valve to give a total of 12 signal ports. Valves with four signal ports can be equipped with a coordinate lever (joystick). The cast-iron valve housing and reducer-valve spools of hardened, precision-ground steel ensure a long service life with minimal internal leakage. Special low-friction seals give effective protection against external leakage.

The PCL4 is designed to give minimal hysteresis and very good long-term control characteristics.

Lever forces can be specified per control-pressure port to give function-specific actuation resistance.

Low hysteresis gives consistent machine-function response to valve actuation.

Good metering properties enable gentle, proportional control.

Very wide range of control-pressure characteristics enables control of machine functions to be application-optimized.

Wide range of control devices and accessories gives great flexibility in system design.

Valve can be installed in arm rests of operator's seat and fitted with site-suited lever to give very ergonomic control station.

Quality materials and great precision in manufacturing, assembly and testing assure a quality product with low internal leakage and long service life.

Total compatibility with Parker directional valves gives predictable and harmonious system characteristics.

Essential characteristics
- Small dimensions enable simple, compact installation.
- Robust, simple design gives great reliability and easy servicing.
- Low, well-adapted lever forces and short lever strokes give good operating comfort.
Remote Controls – Hydraulic

PCL4

How to order your valve

The best way to order your valve is to fill in one of our "Customer Specification Forms", in which you can specify all the optional functions you wish to be incorporated into your valve. However, if you need only a simple, basic valve, in which all control-pressure ports have the same configuration, you may use an ordering code similar to the one shown above. Simply select the desired options from the tables above and enter the appropriate codes into the boxes in the ordering code above.

See pages 8 - 11 for more information about the different options available.

Code

Valve type

<table>
<thead>
<tr>
<th>Code</th>
<th>Valve type</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>For coordinate lever</td>
</tr>
<tr>
<td>02</td>
<td>For linear lever(s) or pedal</td>
</tr>
</tbody>
</table>

Number of control-pressure ports

<table>
<thead>
<tr>
<th>Code</th>
<th>Thread connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>G1/4</td>
</tr>
<tr>
<td>U</td>
<td>9/16-18 UNF-2B</td>
</tr>
<tr>
<td>M</td>
<td>M14x1.5</td>
</tr>
</tbody>
</table>

Code

Connection

<table>
<thead>
<tr>
<th>Code</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Pump and tank connections on side of valve</td>
</tr>
<tr>
<td>B</td>
<td>Pump and tank connections on underside of valve</td>
</tr>
</tbody>
</table>

Code

Lever unit

<table>
<thead>
<tr>
<th>Code</th>
<th>Lever unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Coordinate lever</td>
</tr>
<tr>
<td>H3</td>
<td>Straight linear lever</td>
</tr>
<tr>
<td>HF</td>
<td>Bent linear lever for increased spacing in case of several levers</td>
</tr>
<tr>
<td>E1</td>
<td>Linear or coordinate lever 2-position thumb switch</td>
</tr>
<tr>
<td>E2</td>
<td>Linear or coordinate lever 3-position toggle switch</td>
</tr>
<tr>
<td>E3</td>
<td>Linear or coordinate lever 3-position toggle switch 1 detent position</td>
</tr>
<tr>
<td>E4</td>
<td>Linear or coordinate lever 3-position toggle switch 2 detent positions</td>
</tr>
<tr>
<td>N0</td>
<td>Coordinate lever without thumb switch</td>
</tr>
<tr>
<td>N2</td>
<td>Coordinate lever with 2 thumb switches</td>
</tr>
<tr>
<td>N2T</td>
<td>Coordinate lever with 3 thumb switches</td>
</tr>
<tr>
<td>N4</td>
<td>Coordinate lever with 4 thumb switches</td>
</tr>
<tr>
<td>N4T</td>
<td>Coordinate lever with 5 thumb switches</td>
</tr>
<tr>
<td>F</td>
<td>Pedal, pressed steel</td>
</tr>
<tr>
<td>A36</td>
<td>Pedal, cast aluminium</td>
</tr>
<tr>
<td>A95</td>
<td>Pedal, rubber coated steel plate</td>
</tr>
</tbody>
</table>

Code

Lever type

<table>
<thead>
<tr>
<th>Code</th>
<th>Lever type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Straight*</td>
</tr>
<tr>
<td>L</td>
<td>Bent to the left*</td>
</tr>
<tr>
<td>R</td>
<td>Bent to the right*</td>
</tr>
<tr>
<td>B</td>
<td>Ball**</td>
</tr>
<tr>
<td>W</td>
<td>Window**</td>
</tr>
</tbody>
</table>

* Type N levers only
** Type H levers only

Code

Mounting plate

<table>
<thead>
<tr>
<th>Code</th>
<th>Mounting plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Mounting plate for PCL401</td>
</tr>
<tr>
<td>M2</td>
<td>Mounting plate for PCL402 with four control-pressure ports</td>
</tr>
<tr>
<td>M3</td>
<td>Mounting plate for PCL402</td>
</tr>
<tr>
<td>M4</td>
<td>Mounting plate for PCL402 with two control-pressure ports</td>
</tr>
<tr>
<td>M5</td>
<td>Mounting plate for PCL402</td>
</tr>
<tr>
<td>M6</td>
<td>Mounting plate for PCL402</td>
</tr>
<tr>
<td>A102</td>
<td>Mounting plate for PCL401, rectangular bellows (for PCL401 with N-type levers only)</td>
</tr>
</tbody>
</table>

Code

Characteristic

<table>
<thead>
<tr>
<th>Code</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>No Breakaway Final Broken Overt. pressure pressure stroke</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>5.0</td>
</tr>
<tr>
<td>7</td>
<td>5.0</td>
</tr>
<tr>
<td>8</td>
<td>5.5</td>
</tr>
<tr>
<td>9</td>
<td>5.6</td>
</tr>
<tr>
<td>10</td>
<td>6.0</td>
</tr>
<tr>
<td>11</td>
<td>4.0</td>
</tr>
<tr>
<td>12</td>
<td>5.0</td>
</tr>
<tr>
<td>13</td>
<td>6.0</td>
</tr>
<tr>
<td>14</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Parker Hannifin

Mobile Controls Division

Borås, Sweden
General
The data given is applicable at an oil temperature of 50 °C (122 °F) and viscosity of 30 mm²/s (cSt) using mineral base oil according to DIN 51524.

Pressures

<table>
<thead>
<tr>
<th>Pressure Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply pressure (pump pressure)</td>
<td>max. 100 bar (1450 psi)</td>
</tr>
<tr>
<td>Recommended supply pressure</td>
<td>15 bar (218 psi)</td>
</tr>
<tr>
<td>Control pressure</td>
<td>max. 75 bar (1090 psi)</td>
</tr>
<tr>
<td>Breakaway pressure</td>
<td>min. 1 bar, (14,5 psi)</td>
</tr>
<tr>
<td>Return-line pressure</td>
<td>max. 3 bar (44 psi)</td>
</tr>
</tbody>
</table>

Flow rate

<table>
<thead>
<tr>
<th>Flow Rate Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control flow</td>
<td>max. 15 l/min (4 USgpm)</td>
</tr>
</tbody>
</table>

Hysteresis

<table>
<thead>
<tr>
<th>Hysteresis Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hysteresis</td>
<td>max. 0.5 bar (7.3 psi)</td>
</tr>
</tbody>
</table>

Hydraulic fluids
Best performance is obtained using mineral-base oil of high quality and cleanliness in the hydraulic system.
HLP hydraulic fluids (DIN 51524), automatic-gearbox oil type A and API CD engine oils can be used.

Viscosity range
10-380 mm²/s (cSt)

Performance efficacy will be reduced if outside the ideal values. These extreme conditions must be evaluated by the user to establish suitability of the products performance.

Filtration
Filtration should be arranged so that the Target Contamination Class 18/16/13 according to ISO 4406 is not exceeded.

Technical Data

Leakage
From pump connection to tank connection with the spool in neutral position and a supply pressure of 40 bar (580 psi) max. 20 cm³/min (1.22 in³) per control-pressure port

Warning
If the filtration demands are not met, the valve poppets can jam in the open position, with the result that the valve remains actuated. It is not possible to force back jammed poppets mechanically.
Lever forces
All lever forces stated are applicable at a control pressure of 15 bar (valve not fitted with an extra centring spring). Pedal forces are applicable when the C2 centring spring is used (see page 9).

<table>
<thead>
<tr>
<th>Force Description</th>
<th>Force (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal force for linear lever, fully actuated</td>
<td>1.2</td>
</tr>
<tr>
<td>Normal force for coordinate lever (joystick) one function fully actuated</td>
<td>1.8</td>
</tr>
<tr>
<td>two functions fully actuated</td>
<td>2.4</td>
</tr>
<tr>
<td>Normal force for pedal, fully actuated</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Electrical data
(appplies to switch in E- and N-type levers)
The data given below is what is needed to obtain the maximum service life. The values can be exceeded with retained function, but will result in a reduction in service life.
In the event of inductive loading, a protective diode must be fitted.

Breaking capacity
- DC, resistive loading: 2A/24V
- DC or AC, inductive loading: 1A/24V

Connections
Three different types of connection thread are available:
- G1/4 for flat seal (type Tredo) according to ISO 228/1 (G version)
- 9/16-18 UNF-2B (for O-ring) according to SAE J1926/1 (U version)
- M14 x 1.5 (metric ISO thread) for flat seal (M version)

Weight
The weight of the unit varies with its configuration. A few examples are given below.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve with linear lever</td>
<td>approx. 1.6</td>
</tr>
<tr>
<td>Valve with coordinate lever</td>
<td>approx. 3.2</td>
</tr>
<tr>
<td>Valve with pedal (F)</td>
<td>approx. 3.0</td>
</tr>
</tbody>
</table>

Circuit diagram showing two-section PCL4 with two linear levers controlling one hydraulic directional valve containing two spool sections.

Circuit diagram showing two-section PCL4 with one coordinate lever (joystick) controlling one hydraulic directional valve containing two spool sections.
Every valve is customized. The following options are used to configure a valve.

Valve type
- **PCL401** Valve with coordinate lever (joystick)
- **PCL402** Valve with linear lever(s) or pedal

Control pressure ports
- 2-12 4 in PCL401
- 2, 4, 6, 8, 10 or 12 in PCL402

Connections
- **G** Connections with G1/4 thread
- **U** Connections with 9/16-18 UNF-2B thread
- **M** Connections with M14 x 1.5 thread

Location of connections
All control-pressure ports are located on the underside of the valve. The pump and tank connections can be located on the underside or side of the valve. See dimensional drawings.
- **S** Pump and tank connections fitted on the side of the valve.
- **B** Pump and tank connections fitted on the underside of the valve.

Control pressure
Control pressure characteristics can be obtained in an almost infinite number of versions. They are classified into four different groups.
- **Straight characteristic**
- **Straight characteristic with overtravel stroke**
- **Broken characteristic**
- **Broken characteristic with overtravel stroke**

With the straight characteristic, the control pressure changes proportionally with the lever stroke. With the broken characteristic, the control pressure changes proportionally with the lever stroke up to a pre-determined breakpoint, after which the characteristic continues to change proportionally, but with a steeper characteristic. This is useful when there is a big difference between breakout pressure and final pressure and a need to fine-regulate the beginning of the stroke.

With the overtravel stroke, the control pressure becomes equal to the supply pressure. This is recommended primarily for directional valves that have a free flow gallery (CFO). The overtravel stroke serves to ensure full actuation regardless of any return-spring tolerances in the spool actuator of the directional valve.

To calculate a suitable control-pressure characteristic, the following information is needed:

Breakout pressure:
The pressure at which the valve just begins to open. Selectable between 1 and 16 bar.

Final pressure:
Max. control pressure (fully actuated activating device) or, in case of overtravel stroke, the pressure level obtained on reaching the overtravel stroke. Selectable between 5.5 and 75 bar.

Breakpoint:
The lever stroke and pressure at which the broken characteristic changes characteristic.

Overtravel stroke:
The part of the activating-device stroke that constitutes overtravel.

For assistance in calculating the most suitable control-pressure characteristic, please contact your nearest Parker representative.
Mounting plate
A number of different mounting plates for fitting the valve to the machine are available (see dimensional drawings).

- **M1** Mounting plate for PCL401
- **M2** Mounting plate for PCL402 with four control pressure ports
- **M3** Mounting plate for PCL402
- **M3S** Same as M3 but in Stainless steel
- **M4** Mounting plate for PCL402 with two control pressure ports
- **M5** Mounting plate for PCL402
- **M6** Mounting plate for PCL402
- **A102** Mounting plate for PCL401, rectangular bellows (for PCL401 with type N levers only)

Extra centring springs
Any control-pressure port can be fitted with an extra centring spring, which serves primarily to ensure centralization of the lever unit. (Heavier lever units need stronger centring springs.) Also, by fitting different springs at different ports, a coordinate lever (for instance) can be given different actuation resistances for different functions. A list of the different springs available is given in the table below, together with their respective force increases on the push rod. These force values should not be confused with the inherent lever forces, since the various activating devices have different ratios.

F1 is the force transmission on the activating device when the spool is in the neutral position.
F2 is the force transmission on a fully actuated activating device.

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7</td>
<td>5 N</td>
<td>8 N</td>
</tr>
<tr>
<td>C0</td>
<td>19 N</td>
<td>33 N</td>
</tr>
<tr>
<td>C1</td>
<td>25 N</td>
<td>45 N</td>
</tr>
<tr>
<td>C5</td>
<td>35 N</td>
<td>71 N</td>
</tr>
<tr>
<td>C2</td>
<td>49 N</td>
<td>71 N</td>
</tr>
<tr>
<td>C3</td>
<td>51 N</td>
<td>92 N</td>
</tr>
<tr>
<td>C4</td>
<td>65 N</td>
<td>169 N</td>
</tr>
<tr>
<td>C6</td>
<td>100 N</td>
<td>214 N</td>
</tr>
<tr>
<td>C8</td>
<td>130 N</td>
<td>243 N</td>
</tr>
</tbody>
</table>

Lever E1

Levers E2, E3, E4

The detent position on lever E3 results in a connection between the red and black cables.

Activating devices
Several different types of activating device are available:
- Straight lever with ball
- Straight lever with window knob for insertion of functional symbol
- Straight lever with thicker plastic handle (can be equipped with different switches)
- Ergonomic multi-function lever that can be equipped with up to 5 thumb-switches
- Pedal

See also dimensional drawings.
H1 Coordinate lever (joystick) with ball or window knob
H3 Straight linear lever with ball or window knob
H3S Lever H3 in stainless steel
H4-H7 Bent linear lever with ball or window knob
E0 Linear or coordinate lever without thumb switch
E1 Linear or coordinate lever with 2-position thumb switch
E2 Linear or coordinate lever with 3-position, spring-centred toggle switch
E3 Linear or coordinate lever with 3-position toggle switch with detent at one end position
E4 Linear or coordinate lever with 3-position toggle switch with detents at both end positions
N0 Coordinate lever without thumb switch
N2 Coordinate lever with 2 instantaneous switches (Nos. 1 and 2)
N2T Coordinate lever with 3 instantaneous switches (Nos. 1, 2 and 5)
N4 Coordinate lever with 4 instantaneous switches (Nos. 1-4)
N4T Coordinate lever with 5 instantaneous switches (Nos. 1-5)
F Pedal of pressed steel plate
A36 Pedal of cast aluminium
A95 Pedal of rubber coated steel

Lever N2T
right-hand version

Right-hand version of lever, i.e. intended for mounting in right-hand arm rest.

Lever N4T
left-hand version

Left-hand version of lever, i.e. intended for mounting in left-hand arm rest.

Breaker symbol (colours of output cables)

Push button
1 2 3 4 5
White Green Brown Pink Grey Green/yellow
Lever detents for PCL402

Linear levers can be equipped with a detent that locks the lever in the fully actuated position (for one or both control-pressure ports).

MD2 Mechanical end-position detent. Released by pulling the lever out of its detented position. It can be used with signal pressures of up to 30 bar inclusive. See figure on page 6.

ED2 Electric end-position detent. A solenoid locks the lever in its fully actuated position. By means of a force index, a greater resistance to lever actuation is felt by the operator just before the lever enters the detented position, i.e. after approx. 75% of the lever stroke. The lever is released from the detented position by breaking the current to the solenoid. In emergencies, the lever can be pulled out of the detented position manually. Since sections equipped with the ED2 do not have protective bellows, it is important that they are installed in the machine in such a way as to prevent the ingress of dirt (which would impair the function of the valve).

At a signal pressure of 35 bar, the holding force is min. 19 N.

Electrical data:
Solenoid voltage: 24 VDC max. 3.2 W 100% ED

Friction brake for PCL402

S2 Friction brake with centre-position indication. Movement is braked so that the lever remains in any position in which it is put. The centre position is index-marked for reliable positioning into neutral. Due to the size of friction brake, a 35 mm spacer block is fitted between the sections in valves containing more than one section. See dimensional drawing.

Shuttle valve for signal on activation of valve

A42 PCL402 with 2 control-pressure ports, and with the pump and tank connections on the underside of the valve, can be equipped with a shuttle valve that emits a signal as soon as the valve is activated.

Signal obtained in port S on activation of valve.
PCL401 levers

Lever E0 - E4

- a) Applies to max. actuation of one function
- b) Applies to max. actuation of two functions

Lever H1 with ball

- c) 210 with window knob
- d) Ø27 with window knob

Lever N0 - N4T

- Straight version

Lever N0 - N4T

- Right-hand version and A102 mounting plate
PCL401 valve housing
PCL401 with all connections in the underside of the valve and with A102 mounting plate.

Remote Controls – Hydraulic

PCL401 with tank and pump connections on the side of the valve and with M1 mounting plate.

Catalogue HY17-8357/UK
Dimensional Drawings

PCL4 with all connections in the underside of the valve and with A102 mounting plate.
Remote Controls – Hydraulic

PCL402 Levers with ball

Lever H5

Lever H4 mounting position 4

50 (1.97) 50 (1.97)

Lever H3

Lever H4 mounting position 2

50 (1.97) 50 (1.97) 50 (1.97) 50 (1.97) 50 (1.97)

15 (0.59) 30 (1.18) 45 (1.77)

PCL402 with S2 friction brake on two sections

Spacer block

Sections with S2

PCL402 with H3 lever and window knob

83 (3.27)

25° 25°

25°

2(Ø1.06)

70 (2.76)

190 (7.48)

200 (7.87)
PCL402 Housing and mounting plates

M3 mounting plate

Valve housing with bottom connection of pump and tank

Valve housing with side connection of pump and tank

M2 mounting plate

M4 mounting plate

M6 mounting plate

Number of sections L mm L inch
1 35 1.38
2 70 2.76
3 105 4.13
4 140 5.51
5 175 6.89
6 210 8.27

Control pressure port A

Control pressure port B

Ø6.5 mm (0.26 inch) hole for cable passage

Section 1

Section 6

Ø6.5 mm (0.26 inch) hole for cable passage

Mounting hole, min Ø92 mm (3.62 inch)

Pump connection

Tank connection

Pump connection

Tank connection

Control pressure port B

Control pressure port A

Ø6.5 mm (0.26 inch) hole for cable passage

Pump connection

Tank connection

Pump connection

Tank connection

Control pressure port B

Control pressure port A

Ø6.5 mm (0.26 inch) hole for cable passage

Section 1

Section 6

* Applies to M2, M3, M4 and M6
PCL402 Pedal F and M5 mounting plate
For housing dimensions, see page 15

PCL402 Pedal A36

* Bracket for lever attachment (if required)
PCL402 Pedal A95
For housing dimensions, see page 15
FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure, and review the information concerning the product or system in the current product catalogue. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

WARNING

Failure or improper selection or improper use of the products and/or systems described herein or related items can cause death, personal injury and property damage.

Offer of Sale

Please contact your Parker representation for a detailed "Offer of Sale".
Hydraulics Group Sales Offices

Europe

- **Austria**
 Wiener Neustadt
 Tel: +43 (0)2622 23501
 Fax: +43 (0)2622 66212

- **Belgium**
 Nivelles
 Tel: +32 (0)67 280 900
 Fax: +32 (0)67 280 999

- **Czech Republic**
 Klecany
 Tel: +420 284 083 111
 Fax: +420 284 083 112

- **Denmark**
 Ballerup
 Tel: +45 4356 0400
 Fax: +45 4373 8431

- **Finland**
 Vantaa
 Tel: +358 (0)9 4767 31
 Fax: +358 (0)9 4767 3200

- **France**
 Contamine-sur-Arve
 Tel: +33 (0)450 25 80 25
 Fax: +33 (0)450 03 67 37

- **Germany**
 Kaarst
 Tel: +49 (0)2131 4016 0
 Fax: +49 (0)2131 4016 9199

- **Hungary**
 Budapest
 Tel: +36 (0)61 220 4155
 Fax: +36 (0)61 422 1525

- **Ireland**
 Dublin
 Tel: +353 (0)1 293 9999
 Fax: +353 (0)1 293 9900

- **Italy**
 Corsico (MI)
 Tel: +39 02 45 19 21
 Fax: +39 02 4 47 93 40

- **The Netherlands**
 Oldenzaal
 Tel: +31 (0)541 585000
 Fax: +31 (0)541 585459

- **Norway**
 Ski
 Tel: +47 64 91 10 00
 Fax: +47 64 91 10 90

- **Poland**
 Warsaw
 Tel: +48 (0)22 863 49 42
 Fax: +48 (0)22 863 49 44

- **Portugal**
 Leca da Palmeira
 Tel: +351 22 9997 360
 Fax: +351 22 9961 527

- **Slovakia**
 Ref. Czech Republic

- **Spain**
 Madrid
 Tel: +34 91 675 73 00
 Fax: +34 91 675 77 11

- **Sweden**
 Spånga
 Tel: +46 (0)8 597 950 00
 Fax: +46 (0)8 597 951 10

- **Turkey**
 Merter/Istanbul
 Tel.: +90 212 482 91 06 or 07
 Fax: +90 212 482 91 10

- **United Kingdom**
 Warwick
 Tel: +44 (0)1926 317 878
 Fax: +44 (0)1926 317 855

International

- **Australia**
 Castle Hill
 Tel: +61 (0)2-9634 7777
 Fax: +61 (0)2-9899 6184

- **Canada**
 Milton, Ontario
 Tel: +1 905-693-3000
 Fax: +1 905-876-0788

- **China**
 Beijing
 Tel: +86 10 6561 0520
 Fax: +86 10 6561 0526

- **Asia Pacific Group**
 Hong Kong, Kowloon
 Tel: +852 2426 8008
 Fax: +852 2425 6896

- **India**
 Mumbai
 Tel: +91 22 7907081
 Fax: +91 22 7907080

- **Japan**
 Tokyo
 Tel: +(81) 3 6408 3900
 Fax: +(81) 3 5449 7201

- **Latin America Group**
 Brazil
 Tel: +55 12 3954-5100
 Fax: +55 12 3954-5266

- **South Africa**
 Kempton Park
 Tel: +27 (0)11-961 0700
 Fax: +27 (0)11-392 7213

- **USA**
 Cleveland (Industrial)
 Tel: +1 216-896-3000
 Fax: +1 216-896-4031

Parker Hannifin is the world’s premier supplier of motion and control systems and solutions, with sales and manufacturing facilities throughout the world. For product information and details of your nearest Parker sales office, visit us at www.parker.com or call free on 00800 2727 5374.